Source-to-Source Compilation in Racket
You Want it in Which Language?

Tero Hasu' Matthew Flatt?

1Bergen Language Design Laboratory
University of Bergen

2pPLT
University of Utah

IFL, 1-3 October 2014

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

key topics

» how to implement source-to-source compilers on top of Racket
» motivations:

» language infrastructure reuse
» support for implementing macro-extensible languages

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

macros for language definition

» Racket macros not only support language extension, but also
language definition
» host language syntax can be hidden entirely

I\M ‘

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

"normal” execution of Racket languages

macroexpand
Racket core Racket
» Racket languages
are usually compile L
executed within the un
Racket VM Racket VM |« bytecode

@J :

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

source-to-source compilers

» or transcompilers
» programming language implementations outputting source code

» especially nice with exotic platforms
» have a compiler write what the vendor says you should

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

don't need no Racket

transcompiler implementation recipe:
1. pick your favorite programming language
2. pick useful libraries (parsing, pretty printing, etc.)

3. write an implementation

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

can get back-end side infrastructure reuse

» typically target language libraries
» e.g., language standard libraries, libuv, OpenGL, SQLite, ..

W

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

what about front-end side?
» reuse of language facilities?
» macro systems, module systems,

» reuse of dev tools?
» IDEs, documentation tools, macro debuggers,

profile-engine.rkt - DrRacket [D[O)[x] Magnolisp - Conkeror BEIE

File Edit View Language Racket Insert Tabs Help Here, ident.ity must have a single, concerete type, possible to determine from
BBl O¥ Pl R0 Stop =] the context of use. It is not a generic function, and hence it may not be used in

prefile-engine.rkt > (define ...) ™
multiple different type contexts within a single program.

#lang magnolisp =

ums. rkt") (typedef id maybe-annos) synta

t "profile-enums.rkt"))

(require "profile-
(provide (all-from-

Dedares a type. Presertly only foreign types may be dedared, and 14 gives the

(define-syntax-rule (fu np..0b .. 3 corresponding Magrolisp name. The foreign anmotation should always be
(begin provided.
(function (np ...) b
For example:

(provide n)))
l (typedef int (#:annos foreign))

(typedef TProfileEngine #an(fore: (typedef long (#:annos [fareign my_cxx_longl))

(function* (set-profile e v)

#an(foreign ~(fn TProfileEngine TProfile TError))) {var id maybe-annos expr) s =
M| | https:#iwwwiiuib.nof~tero/magnolisp-ift-2014/manual/ 13:51 (100, 16)
Determine language from source custom™ 11:25 21264MB[| e B

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language embedding

» can use some host language functionality and tools

» still syntactically correct language
» might e.g. get type checking from host

Approaches in Haskell, Scala, etc.:
» shallow embedding
» language encoded directly as host operations
» deep embedding

» expressions evaluate to ASTs, which can then be evaluated or
translated

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language embedding in Racket

» difference: Racket has a compile-time phase built-in
» gives more options for embedding

An attractive option:

» macro expressions evaluate to ASTs, which, still at compile-time:
» are made to encode Racket VM operations
» bonus: might write YourLang macros in YourLang

» are also made available for transcompilation

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

phase separation

» Racket's phase separation guarantees that compile time and run
time have distinct bindings and state
» particularly crucial for a transcompiled language

» run time state: TargetLang (not Racket VM)
» run time bindings: YourLang (not Racket)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompilation via Racket bytecode

» suitable when

implementing macroexpand

Racket Racket core Racket
» bytecode is compile i

optimized for un

efficiency—does Racket VM« bytecode

not retain all of the ;

.. Whalesong
original (core) ¥
syntax JavaScript

» there is an API for

parsing bytecode

@J :

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompilation via core Racket

» core syntax for any C
Racket module can X
be extracted mzc
externally with Racket macroexpand core Racket
read—syntax, then
expand compile i

» raco expand un
has the details Racket VM

A

bytecode

L

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

macros in transcompiler implementation

A macro expander is a source-to-source "compiler’—macros exist to
support source-to-source translation.

» general advantages:
» macro-based surface syntax definition gives parsing almost "for
free”
» macros are convenient for "sugary” constructs: syntax and
semantics specified at once
» macros are modular and composable

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

further exploitation of macro-expansion?

» might do back-end-specific work in macro expansion

» performing target-specific analyses and transformations

» collating required metadata
» encoding code and metadata in the desired format

» made separately loadable, even

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Racket submodules

» enable testing time, documentation time, and more
» adding to Racket's run and compile times

" Racket VM run-time code
main code for running the module standalone
test code for testing the module
srcdoc "data-as-code” for inline documentation
can also have:
to-c++ code informing a C++ back end

to-java code informing a Java back end

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

accessing code from within

» a possibility unique(?) to Racket
» a Racket language can access all the code of a module

» can inspect it unexpanded, or expand it first
» can munge it in back-end-specific ways

(define-syntax (module-begin stx)
(syntax-case stx ()
[(module-begin form ...)
(let ([ast (local-expand
#' (#/module-begin form ...)
'module-begin null)])
(do-some-processing-of ast))]))

I\M]J ‘

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

compilation based on "transcompile-time” code

» transcompiler . macroexpand
dynamic—requires Magnolisp core Racket

a submodule
prepared for it
during macro un

_ Racket VM___|
expansion 1 :

compile i

A

bytecode

» e.g. encoding a mglc
syntax-checked
AST with type C++

annotations

I\M ‘

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Magnolisp

» a proof-of-concept toy language

v

surface syntax defined as macros

v

Racket’'s macro and module systems exposed
» macro-programming in any Racket VM based language

v

execution options:
1. evaluation in the Racket VM
» supports "mocking” of primitives, for simulation
2. by translating runtime code into C++
» by invoking separate mglc tool

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Magnolisp syntax sample

#lang magnolisp
(typedef Int
(#:annos foreign))
(function (zero)
(#:annos foreign [type (fn Int)]))
(function (inc x)

(#:annos foreign [type (fn Int Int)]))

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))
(return (inc x))))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

example Magnolisp to C++ translation

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))
(return (inc x))))

» mglc does whole-program
optimization, type inference,
C-++ translation, pretty
printing, etc.

» more interesting: the Racket
language implementation

Hasu, Flatt (BLDL, PLT)

MGL_FUNC Int one() {
return inc(zero ());

}

MGL_FUNC Int two() {
Int r;

{
Int x = one();
{
r = inc(x);
goto b;
¥
}
b:
return r;

}

Source-to-Source Compilation in Racket

a.rkt a.rkt magnolisp-s2s (instance) |

#lang magnolisp s
(require "num-types.rkt")
(function (int-id x) Qefvar>

(#:annos [type (fn int int)] export) def-1lst

X) Cannos> ad CLambda>

.. int-id
a.rkt (core) l macroexpand

(module a magnolisp/main
(#%module-begin
(module magnolisp-s2s racket/base translate
(#%module-begin run
(define-values (def-1lst) » _l
(#%app list a'_ch
(#%app Defvar) #include "a.hpp"
)) MGL_API_FUNC int int_id(int const& x) {
); ’ return x;
: }
(#%require "num-types.rkt") a.hpp
(define-values (int-id)))) #ifndef _a hpp
#includei”a:conﬁg .hpp"
MGL_API_PROTO int int_id(int const& x);
#endif

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompiled language as a library

» mostly a matter of exporting macros and variables
» syntax should be restricted to what can be transcompiled
» some macros should embed information for transcompilation

E.g., "main.rkt” for plain—magnolisp language:

#lang racket/base

(module reader syntax/module-reader plain-magnolisp/main)

(require magnolisp/surface)
(provide #Japp function typedef foreign export type fn)

(require magnolisp/modbeg)
(provide (rename-out [module-begin #)module-begin]))

@J :

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

encoding foreign core language
» a transcompiled language's core language may differ from
Racket's
» macros expand to Racket core forms, but:
» the core forms may have custom syntax properties

» some variables may have special meaning
> etc.

E.g., a Magnolisp core form corresponding to a C++ goto label,
encoded as a call/ec application with a specific property:

(define-syntax (let/local-ec stx)
(syntax-case stx ()
[(_ . rest)
(syntax-property
(syntax/loc stx (let/ec . rest))
'local-ec #t)1))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

defining surface syntax

» with macros that expand to supported core language

(define-syntax-rule
(do body ...)
(let/local-ec k
(syntax-parameterize
([return
(syntax-rules ()
[(_ v) (apply/local-ec k v)])])
body ...
(values))))

(provide do)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

encoding metadata

» describes a core syntactic construct, but isn't one

(function (f x) (#:annos export)

(g x))
encoded as:

(define-values (f)
(let-values ([Q)
(begin
(if '#f (#)app #)magnolisp
'anno 'export '#t)
'#1)
(#)app values))])
(#%plain-lambda (x) (#%app g x))))

where let—values has syntax property 'annotate = #t

W

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

exporting information for transcompilation

» export in a submodule

» shift with begin—for—syntax as required to prevent running
enclosing module upon loading

» encode code as:
1. syntax-quoted code

» prevents evaluation, but preserves lexical-binding information
> as desired, can also preserve source locations or syntax properties

2. in the IR format used by the compiler
3. .

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

exporting full AST as syntax-quoted code

(define-syntax (module-begin stx)
(syntax-case stx ()
[(_ form ...)
(let ([x (local-expand
#' (#/module-begin form ...)
'module-begin null)])
(with-syntax ([(mb . forms) x]
[x-1it x])
#' (mb
(begin-for-syntax
(module* to-compile #f
(provide ast)
(define ast
(quote-syntax/keep-srcloc x-1it))))

. forms)))1))
W &

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

generality

» a general way to host a transcompiled language in Racket
» nothing special about Magnolisp
» principal constraint: a binding form in the hosted language must
be encoded as a binding form in Racket

» the process of hygienic macro expansion relies on it
» in return, Racket resolves names for you, and Racket tools
understand binding structure in YourLang

(typedef TProfileEngine #an(foreign))

(function* (set-profi

#an(foreign *~(fn TProfiteEngine TProfile TError)))

I\M ‘

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompiled-language construction kits

Rascal

\4

v

Spoofax

Silver

v

Racket

v

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

self-extension

A language supports self-extension if the language can be
extended by programs of the language itself while reusing
the language’s implementation unchanged.

Erdweg et al., 2012

L

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language properties allowing pervasive abstraction

Racket supports the definition of languages that have:
1. self-extensibility
» syntactic extensibility through macros
2. scoping control of extensions

» module system and local macros

3. safe composition of extensions
» macro expansion preserves meaning of bindings and references

In other language toolkits, e.g.:
» Sugar* supports (1) and (2)
» Silver supports (3)

@J :

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (idea)
Use of #if & co. is pragmatic in a cross-platform setting.

C++ example:
#include "config.hh”

World init_any_ui(World const& w)

{

#if ON_BB10 || ON_HARMATTAN || ON_SAILFISH
return init_qt_ui(w);

#elif ON_CONSOLE
return init_ncurses_ui (w);

#else
return w;

#endif

}

Q1

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (implementation)

(define-syntax (static-cond stx)
(syntax-case stx (else)
[() #'(void)]
[(_ [else stm]) #'stm]
[(_ [c stm] . rest)
(if (syntax-local-eval #'c)
#'stm
#'(static-cond . rest))]))

where:
» c is a Racket conditional expression, evaluated at compile time

» stm is a Magnolisp statement, for execution at runtime

uggu :

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (use)

(require (for-syntax "config.rkt"))
(function (init-any-ui w)
(#:annos export [type (fn World World)])
(do
(static-cond
[(or on-bbl0 on-harmattan on-sailfish)
(return (init-qt-ui w))]
[on-console
(return (init-ncurses-ui w))]
[else
(return w)])))

With (define on—bb10 #t):

MGL_API_FUNC World init_any_ui(World const& w) {
return init_qt_ui(w);

}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

accessor functions

Generate Getters and' Setters

declarin idea

Select getters and setters to create:

b + bar Select ALl
Deselect ALl

[Allow setters for final fields (remove final' modifier from fields if necessary)

Insertion point:

IFmt member < l
Sort by:
IFweLds in getter/setter pairs < l

Access modifier

@® public O protected O default O private
[final [synchronized

[Generate method comments

The format of the getters/setters may be configured on the Code Templates preference page.

i 2of 2 selected

@

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

declaring accessor functions (implementation)

(define-syntax (declare-accessors stx)
(syntax-case stx ()
[(_ cls fld t)
(with-syntax
([get (format-id stx "~a-get-~a" #'cls #'fld)]
[set (format-id stx "~a-set-~a" #'cls #'fld)])
#' (begin
(function (get obj)
(#:annos [type (fn cls t)]
foreign))
(function (set obj v)
(#:annos [type (fn cls t cls)]
foreign))))1))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

declaring accessor functions (use)

(declare-accessors Obj x int)

(function (f obj)
(#:annos export [type (fn Obj 0bj)])
(Obj-set-x obj (inc (Obj-get-x obj))))

MGL_API_FUNC Obj f(Obj const& obj)
{

return Obj_set_x(obj, inc(Obj_get_x(obj)));

}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

synopsis
A custom source-to-source compiled language can be a Racket

language, and it can have Racket's usual scoped and safely
composable extensibility from within the language.

proof-of-concept
magnolisp.github.io

contact
tero@ii.uib.no
mflatt@cs.utah.edu

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

http://magnolisp.github.io/
mailto:tero@ii.uib.no
mailto:mflatt@cs.utah.edu

