Implementing an SPKI Certificate Repository
within the DNS *

Tero Hasu and Yki Kortesniemi

Helsinki University of Technology,
Department of Computer Science,
FIN-02015 HUT, Espoo, Finland

{tero.hasu, yki.kortesniemi}@hut.fi

Abstract. Authorisation certificates can be used to grant access rights
from the owner of a resource to other entities and then to further share
these rights with others using delegation. However, when access decisions
are made, the delegated rights will not be acknowledged unless all the
certificates in the delegation chain are available for verification. In this
paper we discuss some options for having the necessary certificates avail-
able when needed, talk about a proposed solution of storing part of the
chain in the DNS, describe our implementation of a DNS based SPKI
certificate repository and, finally, elaborate on its use.

1 Introduction

Interactions between entities typically rely on trust, which makes it useful for
an entity to be able to prove that it is trusted by another entity. For example,
one may be able to access a system if and only if one is able to prove that one
is trusted by the owner of the system. To allow the existence of such a trust
relationship to be proved, the system’s policy administrator can issue a digital
certificate stating that a particular entity is authorised for access.

If an access control solution is based on the use of certificates, it is essential
for the correct certificates to be available when access rights need to be proved.
If only a single entity needs a particular certificate, it may be enough for that
entity to store the certificate by itself, provided it has sufficient storage space.
However, if numerous entities need the same certificate, storing it in a public,
distributed database may be a more appropriate solution. As the signature in
a certificate makes it possible to verify both the authenticity and the integrity
of the certificate, it is reasonably safe to trust the information contained in a
certificate, even if the certificate is transmitted and stored using an untrusted
network.

One distributed database solution suitable for certificate storage is the Do-
main Name System (DNS). It has the benefit of already being widely used —
although for other purposes; it could be quickly adapted to storing certificates

* This work was funded by the TeSSA research project at Helsinki University of Tech-
nology under a grant from Tekes.

as well. The idea of using the DNS for storing SPKI (Simple Public Key In-
frastructure) certificates was already outlined in [22], and more details were
provided in [12]. This paper describes how an SPKI certificate repository can be
implemented using the DNS.

The TeSSA (Telecommunications Software Security Architecture) project
aims at presenting a complete solution for securing communications in a non-
trusted internet-like network environment. As a part of realising this goal, we
have extended the Java 2 security model to allow distributed management of
information regarding code execution rights. This was accomplished by replac-
ing the identity-based security management with a capability-based alternative
in which policy decisions are based on authorisation certificates instead of a lo-
cal configuration file for each JVM. The certificates may be acquired on demand
from various sources. Our implementation uses SPKI certificates and three repos-
itories: JARs, local databases, and the DNS. This paper also explains how the
repository is being utilised by the current TeSSA architecture implementation.

The rest of this paper is organised as follows. Section 2 presents background
information by shortly discussing trust and digital certificates in general. Sec-
tions 3 and 4 continue by covering SPKI and the Domain Name System, respec-
tively. Section 5 explains the motivation behind our distributed SPKI repository
implementation, and also gives an idea of what it is currently being used for.
Section 6 goes on to describe the repository itself, and Section 7 suggests future
work related to the repository. Section 8 presents a conclusion of our work.

2 Expressing Trust

As Lehti and Nikander state in [14], trust is a belief that an entity behaves in
a certain way. Trust is rarely absolute, and it is important for trust to have
attributes that make it clear, what kind of trust is in question. For example, one
can say: “I trust Alice to complete this task.” The source of the trust, the target
of the trust, and the kind of trust together form a trust relationship.

A trust model of a system is defined by the set of all trust relationships in
the system. “Trust no one”’, an empty set of relationships, would be an ideal
trust model in the sense that one’s trust cannot be betrayed if one does not
trust anyone. However, in practice such a model is difficult and often impossible
to use. In many cases there is no way to get the task done without trusting
at least some external entities. As an example, let us consider mobile code. In
Java 1.0, all code loaded from the open network is untrusted. Execution of such
code is done inside a sandbox, a very restricted environment in which direct
access to critical resources should be impossible, thus protecting the resources
from attacks. The downside is that no matter how essential a task is, the applet
simply cannot perform it if the limited resources are not enough. This was found
to be too restrictive, and in Java 2 it is possible to choose which access rights
are granted to which programs.

In the real world, not only our trust model, but other factors, like laws and
company practices, affect our decisions. A security policy is the set of rules

and practices that regulate how sensitive information and other resources are
managed [20]. It is desirable for the security policy to reflect the trust model,
but sometimes this is not possible as there may be conflicts with the other factors.
Also, in order to automatically enforce the policy, we must be able to state it
explicitly.

A digital certificate is a signed statement, in which the signer’s belief about
the properties of some entity is expressed. The belief may not be justified, but
that does not make the certificate invalid. Sometimes the signer may not even
believe the statement, but despite that he can express belief in it. It should
be noted that certificates are closely related to trust relationships; they can be
regarded as representations of trust relationships.

It is assumed that the cryptographic methods used to create the signature
are such that it is, in practice, impossible to modify a digital certificate, without
invalidating the binding of the signature to the statement, and thus the whole
certificate as well. As this is the case, the signature is tightly bound to the
statement, but not necessarily to the signer. However, if the signer is thought
to be the key used for signing, or the corresponding public key, the signer also
becomes tightly bound to the document.

3 Simple Public Key Infrastructure

A public key infrastructure (PKI) is a system that provides a mechanism for
publishing public-key values which are bound to some other piece(s) of infor-
mation, such as a name or an authorisation. To support the interoperability of
applications, PKIs define certificate formats and semantics, as well as the process
of verifying that a certificate is valid.

The Internet Engineering Task Force (IETF) is developing a PKI proposal
called Simple Public Key Infrastructure (SPKI) [11,10]. SPKI is more flexible
than X.509 [4] and free from the requirement of a global, trusted Certification
Authority (CA) hierarchy. Any entity having a private key may issue certificates.
SPKI has adopted ideas from the SDSI [26,25] and PolicyMaker [3] prototype
systems. [13]

SPKI was designed to support certificate based authorisation. Just about any
a trust relationship can be described using SPKI certificates; thus policy rules
can be expressed and permissions can be granted in the form of certificates.
Now, authorisation decisions can be supported by or be completely based on
a set of SPKI certificates. However, the SPKI specification does not provide a
list of authorisations that can be included in a certificate. The decision of which
authorisations to support in an application is left to the developer, which adds to
the simplicity and generality of SPKI, but necessitates further standardisation
if interoperability of applications is desired.

SPKI certificates can be used to certify identity, as well, but unlike X.509
and other name oriented systems, SPKI uses cryptographic keys to represent
identities. A public key can act as an identifier for the set of all entities which
can prove possession of the corresponding private key. To facilitate certificate

management by humans, SPKI provides for local name spaces that are relative
to their creators. These local spaces can then be linked to create bigger, even
global, name spaces, if necessary. There are no global names which would refer
to the same keys in every name space. SPKI does not attempt to enforce that
there be no more than one key per name. Names can therefore be thought to
refer to groups of entities.

SPKI certificates can be divided into the three categories given below.

authorisation certificate Binds an authorisation to a key.
name certificate Binds a name to a key.
attribute certificate Binds an authorisation to a name.

An authorisation or attribute certificate can be abstracted into a signed quin-
tuple (1,5, D, A, V) where

I is the Issuer’s (signer’s) public key, or a secure hash of the public key,

S is the Subject of the certificate, typically a public key, a secure hash of a
public key, a name, or a secure hash of some object,

D is a Delegation flag, which, when true, indicates that Subject may further
delegate Authorisation or any subset of it,

A is the Authorisation field, describing what rights the Issuer delegates to the
Subject,

V is a Validation field, describing the conditions (such as a time range) under
which the certificate can be considered valid.

The above abstraction contains all the fields relevant to making access control
decisions. The other fields of SPKI authorisation certificates that are of relevance
to this paper are issuer-info and subject-info. These two fields may contain
any number of URIs (Universal Resource Indicators) that refer to information
regarding the issuer or the subject, respectively.

Often, it is not practical for the administrator of the resource to issue a certifi-
cate to every user of the resource. Instead, delegation can be used to form chains
of certificates, which grant the rights to new users. An SPKI certificate chain con-
sists of a set of certificates C' = {c1, c2, . .., ¢, } such that Ve; = (45, s4,d;, a4,v)),
2<j<n,sj—1=1; and Ve, = (i, Sk, di, ak, V), 1 < k <n—1,dy = true. C
can be used to prove that s, has been given authorisation a; Naz N...Na, by
11 for the validity period v1 Nwo N ... Nwy,.

A name certificate can be abstracted into a signed quadruple (1,5, N,V)
where I, S and V are as above, and N is a name for S in I’s name space. The
name can be any octet string.

Using keys instead of names as identifiers has important privacy conse-
quences. A key without any additional information, like a name certificate, can
not be linked to any particular entity and can therefore be regarded as an anony-
mous identity. The anonymity can be lost, however, if the connection between the
entity and the key becomes apparent as a result of careless use of the certificate
or bad choice of storage location, as we shall see later.

3.1 Certificate Encoding

SPKI certificates are represented using S-expressions. In short, an S-expression
is either a string or a finite list of elements. The strings in the expressions consist
of a concatenation of zero or more octets. The lists have zero or more elements,
which can be either strings or lists.

While S-expressions are always structurally the same, their encodings may
differ depending on their use. A compact format is efficient when sending data
over a network, whereas user interaction requires a readable representation; the
two attributes rarely coincide.

In order for a secure hash calculation to always give the same result for the
same expression, regardless of differences in the encoding, the expressions need to
be translated into some common format. The S-expression specification defines
such a format, and calls it the “canonical” format. It is uniquely defined for each
S-expression, and intended to be easy to parse [24].

This S-expression, encoded in a relatively reader-friendly manner,

(ssh (host tcm.hut.fi) (user root) (max-times #F6#))

has the following canonical encoding (printed assuming the ISO-Latin1 char-
acter set):

(3:ssh(4:host10:tcm.hut.fi) (4:userd:root) (9:max-times1:8))

4 The Domain Name System

The Domain Name System (DNS) [15-17] is the member of the TCP/IP pro-
tocol suite that is responsible for translating host names to Internet Protocol
(IP) addresses. Other uses are also possible, however, as the DNS is simply a
distributed database that can be used to manage any kind of data, as long as
the data is not too sensitive to be stored in a database accessible by anyone.
Naturally, the design of the DNS makes it more suitable for applications similar
to host name lookup and less suitable for data of different characteristics, as we
shall see.

All the data stored in a DNS database is composed of so-called resource
records (RRs). Each record is indexed by its domain name. Domain names are
not unique identifiers, as more than one record can share the same name. The
set of all different values by which data is indexed into a DNS database forms a
domain name space. A domain name space is always structured like a tree, due
to the way the DNS indexing structure has been designed. Domain names must
thus be chosen so that they indicate a position in a hierarchical structure. For
more discussion about the naming limitations, see Section 4.2.

The RRs stored in a DNS database are divided into zones, which in turn are
distributed between servers that are responsible for answering queries regarding
the data stored in the database. Such a server is called a name server, and each
zone should have at least two servers that are considered to be authoritative for
the zone. The information regarding the records in a zone is typically stored in a
file, which is accessible to the servers having the authority over the zone. In this

paper, such a file is referred to as a zone file. Zone files are text files, and zone
information may thus be updated just by editing all the relevant zone files with
a text editor. Other update methods exist, of which most are just proposals [23,
27,28,7,6,29], and one has been standardised [16].

A DNS resolver is an interface to the Domain Name System. To be more
specific, it is a library of programs or routines that to some extent hides the
complexity of constructing, sending, receiving, and interpreting messages re-
quired for communicating with name servers. To improve performance, resolvers
usually have a cache in which RRs may be stored. The time limit for caching an
RR is specified in the header of the RR itself. Data returned by an authoritative
server should be preferred over non-authoritative data when deciding, what data
to keep in the cache.

The DNS, in its current form, is not particularly secure. The IETF DNS
Security Working Group is attempting to create a standard that would, when
widely adopted, significantly improve the security of the DNS. This would-be
standard is called DNS Protocol Security Extensions (DNSSEC) [8]. DNSSEC
adds support for data integrity checking and authentication, among other things.
Implementations have already started to appear.

4.1 DNS Message Size

Resource records are carried from one name server to another within DNS mes-
sages. These messages can be transmitted either as User Datagram Protocol
(UDP) datagrams or in a byte stream formed with Transmission Control Proto-
col (TCP). UDP packets are preferable, as they offer lower overhead and better
performance. However, the use of UDP imposes limitations to the size of mes-
sages that can be sent. The DNS specification defines the maximum size of
messages transported via UDP to be 512 bytes (excluding the UDP header).
Queries are typically short and will fit in 512 bytes, but replies containing many
entries may well exceed the limit. Even a single RR containing an SPKI certifi-
cate, for instance, could easily be too large. In such a case the response must
be truncated and clearly marked as having been truncated. The resolver should
then resubmit the query using TCP.

The UDP standard itself does not define such a severe 512 byte limitation.
Most of the current Internet can handle packets of up to 1500 bytes in size
without fragmentation [5,18], and it can be expected that the average MTU
(Maximum Transfer Unit) of the network hardware in use will continue to grow.
Even now, some networks are only limited by the maximum size that can be
specified in an TP datagram header, which is 65535 bytes. In practice, packets
with significantly larger DNS payload than 512 bytes could be transmitted be-
tween many network nodes if the DNS software accepted larger UDP packets.
A backward compatible modification to the DNS protocol which would allow
larger responses has been suggested [5].

4.2 Domain Naming Limitations

The index of a DNS database, being structured like a tree, can be thought to
consist of nodes and arcs. We use the term node to refer to both internal nodes
and leaf nodes. Each node has what is referred to as a label. Labels are byte
strings with the maximum length of 63 bytes. The empty string is reserved for
the root of the tree, and nodes that have the same parent may not have the same
label.

The DNS standard itself allows labels to contain any octets. Unfortunately,
a lot of the flexibility is lost with the fact that all comparisons in the DNS are
case insensitive. Because of this, case cannot always be preserved, even though
the standard recommends that it be done whenever possible. The labels used
thus cannot be just any binary objects less than 64 octets in size, not even if
encoded with the commonly used base64 encoding.

A domain name (which can be regarded as the name of a subtree of the
domain name space) consists of a concatenation of the labels of each node on
the path from the root of the subtree to the root of the whole tree. The DNS
specification defines how domain names should be represented as text: dots are
used as separators for the labels in the text representation and some characters,
such as dots and non-printable characters of the labels need to be escaped; i.e.
they need to be represented using more than one character. The total number
of octets that represent a domain name is limited to 255 [16].

4.3 Certificate Support in the DNS

All resource records have a type, and records of different types may have a
different format. A proposal for an RR for storing certificates is described in [9].
Each RR type is allocated a number and a mnemonic; for the certificate RR
type these are 37 and CERT, respectively. The structure of a CERT RR is shown
in Figure 1. All RRs share the same header format. The fields specific to CERT
RRs are described below.

certificate type CERT RDATA contains a type value which specifies the type of
certificate contained within the field. Among the currently defined certificate
types are SPKI and X.509. The type value 2 and the type mnemonic SPKI
are reserved for SPKI.

key tag The current specification states that the key tag is a 16-bit value which
should be computed from a public key embedded in the certificate. This
definition does not seem to account for the fact that not all certificates have
exactly one public key embedded in them. Some have none, and some have
more than one. Assuming that a suitable key can be chosen, the description
of the algorithm to be used for performing the calculation can be found
from [8]. Before calculating the value, the key needs to be translated into
the same format as it would have within a KEY RR. This, of course, requires
the key type to have been defined in DNSSEC — otherwise the translation
cannot be done. In that case the tag should be set to zero. If the tag is not

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RR name

RR type
RR class header

time-to-live (TTL)

RDATA length

certificate type

key tag

algorithm RDATA

! certificate or CRL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. CERT resource record structure.

calculated, for whatever reason, the algorithm value must also be set to zero
even if the algorithm is known and defined in DNSSEC. This is because it is
possible for a tag calculation to yield the value zero, and thus a zero tag by
itself cannot be taken to indicate that a calculation has not been performed.

algorithm The algorithm value specifies the hash and the public-key algorithms
used in the creation of the certificate. The values used are the same as for
the algorithm fields of the KEY and SIG RRs (as defined in [8]), except that
the value zero indicates that the algorithm has either not been included in
the DNSSEC specification or that it is unknown to the entity that created
the CERT RR.

certificate or CRL The certificate itself. Alternatively, instead of a certificate,
the record may contain a certificate revocation list (CRL). The CERT specifi-
cation does not say anything about the format in which an SPKI certificate
should be in the certificate field. However, the canonical S-expression format
is an obvious choice in the sense that signatures can then be checked directly
from the RR, if necessary. For the same reason the S-expression should not be
base64 encoded. Using base64 would also increase the size of the certificate.
As stated in Section 4.1, space is at premium within DNS messages.

As zone files are typically text files, the CERT specification also defines a text
representation for the CERT RDATA. In a zone file a CERT RR could look like:

s.cf9e0250.certs.to. CERT 42 55742 ECC (
) KDQ6Y2VydCg20mlzc3Vlcjk6c2VydmVyLXBhKSgxMDppc3N1ZXItbGIjMjMEZG52z0kBjY (
WiwaG9yLnR jbS50dXQuZmkpKDc6c3ViamVjdDk6Y2xpZW50LXBhKSgxMTpzdWJqZWNOLWxvYz
Iz0mRuczpAY2FtcGhvci50Y20uaHVOLmZpKSgz0nRhZzE6MSko0DpkbnMtdH1wZTE6MykoN jp
) zaWduZXI50nNlcnZlcilwYSkp

The type field is represented as an unsigned integer or as a mnemonic symbol
(e.g. SPKI). The key tag is given as an unsigned integer. The algorithm may be
specified either by using an unsigned integer or the corresponding mnemonic,
as specified in DNSSEC. The certificate itself is included in a base64-encoded
form, and may be divided into white space separated substrings, which are con-
catenated to obtain the entire certificate. The certificate may span lines if the
substrings are appropriately enclosed in a pair of parentheses. In general, multi-
line RRs can be indicated by grouping data using parentheses; any line breaks
surrounded by a “(” and a “)” are ignored.

5 Implementing a Repository

To better understand the choices made in the implementation of the repository,
let us start by investigating the intended uses for the repository. In particular, the
use of certificates for Java 2 policy management is talked about. That discussion
is followed by an introduction to the search algorithm used, and an example of
the algorithm in action.

5.1 Motivation

One certificate may be needed by multiple entities. If each entity stored their
own copy of the certificate, it would perhaps speed up the process of proving the
existence of a trust relationship. However, this kind of duplication of data would
make it hard to avoid inconsistencies between the data possessed by different
entities. Also, making an update to a piece of information would require that
each concerned entity be notified. This would probably lead to the generation
of unnecessary traffic, as every entity might not need the information between
every update.

If, instead, all entities used a shared repository, there would be very little or
no unnecessary traffic. Entities could acquire updated information only if and
when they need it, an arrangement sometimes called “lazy evaluation”.

The certificate storage solution must scale well if it is to support an Internet-
wide system that is open for everyone to participate in. Centralised solutions
would probably prove inadequate, at least because of congestion caused by all
entities in need of a certificate trying to access the same network node. Dis-
tributed databases do not have this problem; more servers can be added if the
amount of data stored in the database gets too large for the existing servers
to handle. Distribution also increases fault-tolerance, as failure in one network
node does not make the whole database inaccessible. This reduces the chance of
denial of service situations.

5.2 Java Policy Management

In Java 2, a security policy defines the rules and the AccessController class
enforces them. The security policy is implemented as a subclass of the class Pol-
icy. The default implementation uses a set of configuration files to determine
the permissions that should be given to code modules; the permissions may
depend on the location the code was loaded from, as well as the keys with
which the module has been signed. Using this implementation, the permissions
assigned to a class are pseudostatic; they are not amended unless the Policy.re-
fresh() method is explicitly called. As described in [21], we have altered the
default implementation so that, instead of a configuration file, the permissions
are determined dynamically from available SPKI certificates. In addition to a
local file, the certificates may also be stored with the code in a JAR file, or in
the DNS.

In our implementation, calls to AccessController.checkPermission(Per-
mission) will result in a call to our policy manager’s checkPermission(Per-
mission,CodeSource) method, which, if necessary, will attempt to reduce the
set of available certificates to form a valid chain from its own key, called the “Self
key”, to the hash of the code module. It will only look for chains that prove the
Permission passed to checkPermission.

5.3 The Search Algorithm

This section describes the graph search algorithm that is currently responsible
for constructing certificate chains in the TeSSA architecture implementation.
Note that fetching certificates from the DNS is only a part of the algorithm,
and it is something that is only done as a last resort, after an exhaustive search
through the local repositories has been found not to yield the required result.
This is because access to local memory or disk is assumed to be much faster
than access to the DNS.

Suppose that entity k, needs to determine if software agent ks should be
allowed to perform operation o,. k, has a policy that states that an entity is
allowed to perform o, iff it has authority a. k, will see if it can form a certificate
chain C, such that C, belongs to the set of all certificates that prove a and are
accessible to k,. ks was provided within a JAR (Java Archive) file, which also
contains the certificates Cj4r- k, also has access to a local certificate repository
Riocal, as well as to a DNS certificate repository Rpys-

Below is an algorithm that finds C, if it exists. Note that at any point of
the search, no certificate c. = (i, S¢, dc, ac, vc) is to be added to the search tree
unless its signature is valid, and a. O a, and v, indicates that c. is valid at the
time of the search. Also, non-delegable certificates are only to be considered if
their subject is k.

JAR search phase

Beginning from k,, build a backward search tree T} using depth-first search.
That is, first take those certificates in C ;i that have been issued to ks and
attach them as arcs to Tjs. Then recursively go through all of the attached arcs

10

and attach more certificates to T}, if possible. If at any point T35 reaches k,,
terminate the search immediately and return the chain C, that consists of the
arcs leading from k, to k.

Local repository search phase

Take the nodes in T} as the target set, and build a forward search tree T,
using depth-first search. Let Rjocqi(k) be the set of all certificates in the local
repository that have been issued by k. First, attach Rjocai(ky) to Tss, and then
recursively go through all of the attached arcs, attaching more arcs to the subject
nodes if possible. If at any point T, reaches T35, immediately combine the trees
and return any path from k, to k, in the resulting tree as a certificate chain.

DNS search phase

The DNS search phase has two subphases: a forward search phase and a
backward search phase. Almost the same search algorithm is described in [12]
with more detail; the only difference is that here we make use of the search trees
Tts and T35 that may already contain arcs.

1. Forward search phase
For each entity & in T, for which DNS location information is known (con-
tained within some of the certificates) do:

(a) Set the forward search set Cys to Rpns(k,any) (the set of certificates
stored within the DNS that have k as the issuer, and any subject).

(b) If Cts = @, return indicating failure.

(c) Add Cys to Tys.

) If Ty now reaches T}, combine the trees, and return any path from &,

to ks in the resulting tree as a certificate chain, indicating success.

(e) If Cys only contains one certificate, recursively continue the forward
search phase from the subject of that certificate. Return the result.

(f) Move on to the backward search phase.

=

2. Backward search phase
For each entity k in Tjs for which DNS location information is known do:

(a) Set backward search set Cps to Rpns(any, k).
) If Cys = @, return indicating failure.

(¢) Add Cys to Tps.

) If T,s now reaches T, combine the trees, and return any path from &,
to ks in the resulting tree as a certificate chain, indicating success.

(e) Recursively continue the backward search phase for each certificate ¢ in
Cps, choosing the issuer of ¢ as k. If success is returned, stop the search
and return the result chain, indicating success.

(f) Return indicating failure.

5.4 An Example

Figure 2 illustrates an example graph search scenario, in which the search algo-
rithm presented in Section 5.3 is used to attempt to acquire a certificate chain
whose elements meet certain criteria C. For example, one criterion could be that

11

al al
| ocal repository S 1 JAR
' '
1 1
| |

N
N\
N\
—~_\
o
4
final
, /5 subj ect
| 4 |
| ! 11 ! |
: | (forward , :
' : sear ch) : '
: ' ' :
' '
I R R |
del egabl e, NON- del egabl e, del egabl e, NON- del egabl e,
neet s but neets but does NOT does NOT neet
criteria C criteria C neet criteria C criteria C

Fig. 2. A graph search scenario.

the certificates in the chain must prove that the subject of the certificate has
permission p, and another one could be that the certificates must presently be
valid.

The arcs of the graph represent certificates and the nodes represent entities.
The verifier’s public key is v, and the hash of the Java code whose permissions
are to be determined is f.

The numbers show the order in which the certificates are examined by the
algorithm. Here we are assuming that the certificates are checked in top to
bottom order, but the order is implementation dependent. The certificate chain
that is acquired by the algorithm in this caseisv - c—e—i—k —1— f,
which is also the only one in the graph that satisfies the required criteria C.

6 The Certificate Repository Implementation

The repository implementation consists of two parts: the name server and the
resolver. In our implementation, the name server is a standard name server,
but the resolver was tailor-made for this application. This section describes the
implementation in detail and starts by talking about the DNS as a database,
moves on to briefly discuss the name server, then details our resolver and finally
evaluates the implementation.

6.1 The Database

One of the principles of the TeSSA project is to use existing open solutions when-
ever a suitable one can be found. The Domain Name System is a standardised
distributed database that is already in use throughout the Internet, and it can

12

be used for storing certificates. Mostly for these reasons, the DNS was chosen as
the basis of our distributed certificate repository implementation.

Indexing Storing the certificates in CERT RRs was an obvious decision, as the
particular RR type has the purpose of allowing certificates to be stored in the
DNS. However, choosing an index structure for the certificates to be stored was
not so straightforward. The standard DNS indexing practice naturally had to be
adhered to, but the two-way graph search algorithm that we wanted to use for
certificate chaining also had its own requirements.

Let us assume that we have been given sufficient information, e.g. public
keys and domain names, about any two entities k1 and ks. Then it must be
possible for the algorithm to find all certificate chains between k1 and ko, if all
the certificates in those chains are stored in the DNS, and the algorithm is not
terminated as soon as it finds the first chain (which it might do, for performance
reasons).

As the graph search algorithm is a two-way one, it needs to be able to fetch
certificates issued by, or issued to an entity, depending on the direction of the
search. The sets of certificates returned do not need to be exhaustive, for as long
as that will not cause the algorithm to miss any chains. Due to the nature of the
algorithm, those certificates that may appear in the middle of any chain must
be indexed by both the issuer and the subject. Those that can only appear in
the beginning must be indexed by the issuer, and those that can only appear in
the end must be indexed by the subject.

As DNS entries are indexed by domain names, it follows from the above
reasoning that certificates which may be in the middle of a chain must be stored
in two RRs, one of which should be given the issuer’s domain name, and the
other one that of the subject. It is possible to use RRs of type CNAME to avoid
placing the same certificate data under two different domain names. A CNAME RR
specifies an alias; e.g. requests for CERT RRs in domain i.selfadmin.certs.to
could be “redirected” to result in replies consisting of the CERT RRs with the name
s.gameprovider.certs.to by adding a single CNAME RR in the i.selfadmin.
certs.to domain.

To easily distinguish between certificates that require different kind of index-
ing or handling by the search algorithm, we are using the following terminology,
which was originally defined in [22] and revised in [12].

Trust certificates Certificates belonging to this category may be expressed as
(I, S,true, A,,V), where A, only contains rights of which none have been
acquired through delegation; i.e. A, only contains rights which I is autho-
rised to grant without possessing any certificates. The name trust certificate
is appropriate because I trusts someone else to decide about the use of some-
thing that is its own. I may want to keep certificates like this to itself, and
use them only when verifying a chain. That allows I to easily control access
to its own property.

13

Certificate|| Domain name of
category [/issuer| subject
Trust X

Delegation X X
Permission X
Identity X

Table 1. Indexing of SPKI CERT RRs.

Delegation certificates Certificates which are not trust certificates and can
be denoted (I, S,true, A, V) belong to this category. This category should
also be used if there is uncertainty about a certificate being a trust certificate.

Permission certificates All certificates belonging to this category can be writ-
ten as (I, S, false, A, V) using a 5-tuple.

Identity certificates This category contains SPKI name certificates, and gen-
erally any certificates expressible as (I, S, N, V).

Note that identity certificates are currently not handled by the algorithm at
all. The indexing of certificates stored in the DNS is summarised in Table 1.

Setting issuer-info and subject-info If we encounter a previously un-
known entity while constructing a certificate chain, we do not know which do-
main name it uses to store its certificates. This information must be available
from somewhere. The entity identifiers themselves are contained in the issuer
and subject fields of SPKI authorisation and attribute certificates. As that in-
formation is contained in the certificates themselves, it is natural to also store
the other necessary information in the same place.

We have used the two fields, issuer-info and subject-info, to include
the domain names of the issuer and the subject. It is not necessary to include
both fields in any certificate, however, since someone who has fetched a certifi-
cate from the DNS should know which domain the certificate was acquired from.
That information need not be repeated in the certificate itself. Hence certificates
stored in the issuer’s domain need to include information regarding the subject’s
domain, and vice versa. Since delegation certificates are stored in both the is-
suer’s and the subject’s domain, it may be more convenient to include both fields
rather than to create two different certificates.

As stated in Section 3, the information contained in the issuer-info and
subject-info fields must be in the form of Universal Resource Indicators (URISs)
[2]. An URI contains a prefix specifying the naming scheme used, but at the
time of writing no prefix has been assigned for DNS domain names. For testing
purposes, we have been using an URI of the form dns:dns_domain_name, where
dns_domain_name is any valid domain name of any DNS domain name space.

As mentioned earlier, a public key alone, without any other information re-
garding the key, cannot be linked to any particular entity. As the issuer-info

14

and subject-info have the purpose of providing additional information about
the public keys (or other entity identifiers) in a certificate, they may poten-
tially compromise anonymity. The domain name used by an entity for certificate
storage can be very revealing. Therefore, if an entity wishes to have completely
anonymous certificates, she should anonymously arrange for the use of a zone
for storing those certificates, and select a zone which is not known to be used by
her for any purpose.

A Naming Convention All certificates that have the same domain name
and the same RR type and class (RR class specifies the protocol suite that the
information in the RR applies to) will be returned at once by a name server. This
may result in large replies unless the domain names are chosen carefully. The
search algorithm that we are using only wants to fetch certificates either issued
by an entity or issued to an entity, but not both at once. This is something
that can be taken advantage of by assigning two domains per entity, one for
certificates issued by the entity, and one for certificates issued to the entity.

We have adopted a naming convention in which each entity has its own
domain name for storing certificates, and that name is prefixed with the label
i or s when naming certificates issued by or issued to the entity, respectively.
While this kind of naming will avoid unnecessary traffic and data processing
caused by irrelevant data in replies, it will unfortunately not help avoid the
use of TCP replies, unless very short keys are used in the certificates. The size
limitations are too severe, as described in Section 4.1.

Setting Key Tags As explained in Section 4.3, CERT RRs contain a key tag, but
just one. We have used the following rule to decide whether the key tag should
be calculated from the issuer field or the subject field of an SPKI certificate:

If an SPKI certificate is to be stored in its issuer’s domain, the key tag is
calculated from the subject field, and vice versa. If the field to be used does
not contain a single key which can be converted into a standard format for the
calculation, then the tag value is set to zero. If the field contains a hash of a key,
the key is acquired for the calculation if possible.

6.2 The Name Server

As our repository implementation is based on the DNS, we naturally needed a
name server as one of the components. We have not implemented our own name
server, however, nor do we have any intention to do so. There is little need for
tight integration between our architecture implementation and a name server,
as the resolver alone allows us to request services from any name server that
correctly implements the DNS protocol.

Currently our resolver implementation is limited to only making queries, and
we have been making zone updates manually at the server end. However, DNS
dynamic update standardisation is progressing, and dynamic update support
could be added to the resolver implementation if there were sufficient need for

15

the ability to make flexible zone updates. That kind of functionality could, for ex-
ample, be needed by a trust and policy management interface which would allow
one to interactively update trust information kept in various different reposito-
ries.

The CERT RR type is a fairly new proposal, and is not yet widely supported
by name servers. BIND (Berkeley Internet Name Domain) is currently the most
widely used name server, and its source code is freely available. We were prepared
to take BIND and to add support for CERT RRs to it, but that proved to be
unnecessary as version 8.2 of BIND, which does support certificates, became
available by the time our resolver implementation was ready for testing. Minor
changes to the code were required, however, as the CERT RDATA zone file loading
code was recent and still contained errors that needed to be fixed. Other than
that, BIND 8.2 has worked well for our purposes.

6.3 The Resolver

The DNS resolver that we are using was tailor-made to suit the requirements of
the current TeSSA architecture implementation. It supports the most common
RR types as well as CERT RRs, and facilitates convenient handling of SPKI
certificates by providing a class interface with explicit SPKI support. CERT RRs
of types other than SPKI may be filtered out from replies. A key tag may also be
specified; when this is done, the answer returned by the resolver will be limited
to CERT RRs that either have the provided key tag value, or for which the key
tag has not been set at all. The filtering process is fast, because the certificates
themselves need not be examined at all.

The resolver provides recursive service, i.e. is capable of following hints re-
turned by name servers until it finds the name server that is authoritative for
a particular domain. RRs received from name servers are automatically cached,
and those from authoritative sources are preferred over non-authoritative ones.
Sometimes caching may result in a client receiving expired certificates, when in
fact there would be fresh, valid certificates in the authoritative name servers. For
this reason, the resolver interface allows one to optionally demand the resolver
to only return data that came directly from an authoritative source. If expired
certificates are received, the query should be remade using this option.

For uniformity with the existing system of TeSSA, the resolver was written
in Java. The JaCoB framework [19] was utilised in implementing the protocol,
as has been done with other protocol components used in TeSSA. The resolver
needs to be hooked into a UDP protocol component before it can communicate
with name servers. We have two interchangeable components suitable for the
task, one of which has been built using the JaCoB framework; the other one is
based on the functionality provided by the java.net package. TCP support has
been added to the resolver recently, and it was also implemented using java.net.

16

6.4 Evaluation of the Repository

Based on our experiences with the certificate repository described in Section 6,
we believe the DNS to be suitable for storing SPKI certificates. Use of the DNS
should enable one to relatively quickly put together a distributed database from
which SPKIT certificates can be retrieved on demand, especially once CERT RRs
are fully supported by common DNS software. Choosing domain names and the
method of making updates to the database seem to be the biggest questions that
need to be considered when creating a certificate database within the DNS.

The indexing scheme described in Section 6.1 works well enough to satisfy the
needs of our search algorithm, but we would have preferred to index certificate
data by the canonical S-expression form of both the issuer and subject of each
certificate. Because of the insufficiently flexible hierarchical indexing used in the
DNS, we could not think of a way to do so. Strict rules have to be adhered to
when naming domains (see Section 4.2), perhaps the most severe of which is that
the hierarchical structure has to be preserved. Not just anyone can put data in
any domain, and thus it appears impossible to somehow derive an appropriate
domain name from a public key, for example, if one has no knowledge of to whom
the key belongs.

Better support for making updates is a lesser problem, as it is easier to add
to the DNS without breaking backward compatibility. As explained in Section 4,
there already are several new proposals for making DNS database updates. It is
to be expected that implementations will offer dynamic update support in the
near future, if they do not do so already.

Our resolver implementation could also use update support, but other than
that it provides all the functionality that we have had use for so far. We have
experienced no performance problems when accessing the DNS with the resolver;
it takes roughly a second to consult one name server. In some cases the required
information can be found from the cache of the resolver, in which case an answer
is returned almost instantaneously. Considering that speed optimisation has not
had the main emphasis in the current architecture implementation, DNS access
is not a bottleneck in its performance.

7 Future Work

In addition to creating new applications utilising the certificate repository de-
scribed in this paper, further work can be put into improving our implementation
and researching alternative repository solutions. Adding dynamic update sup-
port to the resolver and creating an administrative interface to facilitate easier
management of the certificates in a repository have already been mentioned. A
related question is whether SPKI certificates could be used to control zone up-
dates, and whether the ability to do so would offer some clear benefits over those
authentication and authorisation mechanisms suggested in the current dynamic
update specifications, e.g. the use of KEY and SIG RRs.

Both the performance and the proof-finding capabilities of the graph search
algorithm described in this paper could be improved. In the DNS search phase,

17

the current implementation spends most of its time waiting for the resolver to
return data; the idle time could be reduced by making new queries and processing
answers to other queries while waiting for a response to a query [12]. Exhaustive
searches can be very time-consuming, and [22] suggests heuristics to help avoid
them without significantly reducing the algorithm’s success rate. The algorithm
is not capable of findind proof for rights that require more than one certificate
chain to prove, nor can it correctly handle certificates with threshold subjects
(which specify multiple subjects of which a specified number must co-operate to
exercise a right). Aura has presented a graph search algorithm that does support
threshold certificates [1].

As mentioned in Section 5.2, our Java policy manager implementation deter-
mines permissions in a fully dynamic manner. While this allows for flexible policy
management, performance would probably benefit from a less dynamic solution.
Because chains may contain certificates which must be validated before each
use, and new relevant certificates may appear in repositories at any time, a fully
static solution is inadequate. However, at least Permissions granted by chains
consisting only of certificates without validity limitations could be cached for fu-
ture use; future queries regarding these permissions could be answered without
referring to any certificate repository or constructing any chains. We intend to
research these and other possibilities for optimisation in the future.

8 Conclusion

In this paper we have discussed, how many decisions are based on trust and
how this trust can be expressed using authorisation certificates, like the SPKI
certificates. Often, the rights contained in these certificates are further delegated
thus forming chains. To facilitate the management of the certificate chains, it
is a good idea to have a globally accessible storage for certificates belonging to
more than one chain.

We have explored the benefits and drawbacks of using the DNS as a certificate
repository and described a naming scheme and an algorithm for finding the
certificates. We have also introduced and evaluated our implementation of a
resolver and, finally, suggested ideas for future work.

References

1. Tuomas Aura. Fast access control decisions from delegation certificate databases.
In Proceedings of 8rd Australasian Conference on Information Security and Privacy
ACISP ’98, volume 1438 of LNCS, pages 284-295, Brisbane, Australia, July 1998.
Springer Verlag.

2. Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identi-
fiers (URI): Generic syntax. Request for Comments: 2396, August 1998.

3. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proceedings of the 1996 IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, California, May 1996. IEEECSP.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. CCITT (Consultative Committee on International Telegraphy and Telephony).

Recommendation X.509, the directory — authentication framework. CCITT Blue
Book, 8:48-81, 1988.

Donald E. Eastlake. Bigger Domain Name System UDP replies. Internet draft
(expired), June 1998.

Donald E. Eastlake. Secure Domain Name System (DNS) dynamic update. Internet
draft (expired), August 1998.

Donald E. Eastlake. Secure Domain Name System dynamic update. Request for
Comments: 2187, April 1997.

Donald E. Eastlake. Domain Name System security extensions. Request for Com-
ments: 2535, March 1999.

Donald E. Eastlake and Olafur Gudmundsson. Storing certificates in the Domain
Name System (DNS). Request for Comments: 2588, March 1999.

Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L. Rivest, Brian M. Thomas,
and Tatu Ylonen. Simple public key certificate. Internet draft (expired), IETF
SPKI Working Group, March 1998.

Carl M. Ellison, Bill Franz, Butler Lampson, Ronald L. Rivest, Brian M. Thomas,
and Tatu Ylonen. SPKI certificate theory. Internet draft, IETF SPKI Working
Group, May 1999.

Tero Hasu. Storage and retrieval of SPKI certificates using the DNS. Master’s
thesis, Helsinki University of Technology, April 1999.

Yki Kortesniemi, Tero Hasu, and Jonna Partanen. A revocation, validation and
authentication protocol for SPKI based delegation systems. To appear in Network
and Distributed System Security Symposium, San Diego, California, February 2000.
Ilari Lehti and Pekka Nikander. Certifying trust. In Proceedings of the Practice
and Theory in Public Key Cryptography (PKC) ’98, Yokohama, Japan, February
1998. Springer-Verlag.

Mark K. Lottor. Domain administrators operations guide. Request for Comments:
1033, November 1987.

Paul Mockapetris. Domain names — concepts and facilities. Request for Comments:
1034, November 1987.

Paul Mockapetris. Domain names — implementation and specification. Request for
Comments: 1085, November 1987.

Jeffrey Mogul and Steve Deering. Path MTU discovery. Request for Comments:
1191, November 1990.

Pekka Nikander and Arto Karila. A Java Beans component architecture for cryp-
tographic protocols. In Proceedings of the 7Tth USENIX Security Symposium, San
Antonio, Texas, January 1998. Usenix Association.

Pekka Nikander, Yki Kortesniemi, and Jonna Partanen. Preserving privacy in
distributed delegation with fast certificates. In Proceedings of the Practice and
Theory in Public Key Cryptography (PKC) ’99, Kamakura, Japan, March 1999.
Pekka Nikander and Jonna Partanen. Distributed policy management for Java 1.2.
In Proceedings of Network and Distributed System Security Symposium, San Diego,
California, February 1999.

Pekka Nikander and Lea Viljanen. Storing and retrieving Internet certificates. In
Proceedings of NORDSEC’98 The Third Nordic Workshop on Secure IT Systems,
Trondheim, Norway, November 1998.

Masataka Ohta. Incremental zone transfer in DNS. Request for Comments: 1995,
August 1996.

Ronald L. Rivest. S-expressions. Internet draft (expired), IETF Network Working
Group, May 1997.

19

25.

26.

27.

28.

29.

Ronald L. Rivest and Butler Lampson. SDSI — A simple distributed security
infrastructure. (See SDSI web page at http://theory.lcs.mit.edu/"cis/sdsi.
html).

Ronald L. Rivest and Butler Lampson. SDSI — A simple distributed security
infrastructure. In Proceedings of the 1996 Useniz Security Symposium, 1996.
Paul Vixie. A mechanism for prompt notification of zone changes (DNS NOTIFY).
Request for Comments: 1996, August 1996.

Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim Bound. Dynamic updates in
the Domain Name System (DNS UPDATE). Request for Comments: 2186, April
1997.

Brian Wellington. Simple secure Domain Name System (DNS) dynamic update.
Internet draft, DNSSEC Working Group, February 1999.

20

